TFT-​LCD-​Displays

HMI Komplettlösung
Alles aus einer Hand – Ihr zuver­läs­si­ger Hersteller & Entwicklungspartner für HMIs
Durch unsere hohe Fertigungstiefe sowie unser leis­tungs­fä­hi­ges Lieferantennetzwerk kön­nen wir Ihnen für jedes Projektvolumen die pas­sende Lieferkettenlösung anbie­ten. Unser Portfolio reicht dabei von klas­si­schen Frontfolien und Folientastaturen bis zu Multi-​Touch-​Display-​Panels oder plug&play-fähigen Web-​Panels. Kontaktieren Sie uns, wir unter­stüt­zen Sie gern bei der Verwirklichung Ihres Human Machine Interface (HMI) Projekts.
Mit einem Klick auf das jewei­lige Icon oben in der Grafik, erfah­ren Sie mehr über die ein­zelne Komponente!
Spaltverguss
Die Fügestellen oder ‑kan­ten zwi­schen zwei Sichtteilen stel­len eine beson­ders anfäl­lige Stelle für das Eindringen von Schmutz, Staub und exter­nen Medien dar. Durch das ober­flä­chen­bün­dige Vergießen die­ser Fügekanten lässt sich der Eintritt von Fremdkörpern und ‑stof­fen effek­tiv ver­mei­den. Dies sorgt nicht nur für eine sau­bere und lang­le­bige Verbindung, son­dern ermög­licht auch die Erreichung einer höhe­ren IP-​Schutzklasse, was die Widerstandsfähigkeit gegen­über Umwelteinflüssen deut­lich erhöht.
 
Splitterschutzfolie
Die Splitterschutzfolie bie­tet einen effek­ti­ven Schutz für Glasfrontplatten, indem sie das Zerbrechen des Glases ver­hin­dert und gefähr­li­che Splitter zurück­hält. Diese Folie erhöht nicht nur die Sicherheit, son­dern kann auch die Bruchsicherheit der Glasoberflächen deut­lich ver­bes­sern. Darüber hin­aus trägt sie zur Reduzierung von UV-​Strahlen bei, was das Innere vor Verfärbungen schützt.
 
Glas
Glasfronten bei HMIs bie­ten eine moderne und benut­zer­freund­li­che Oberfläche, die sowohl ästhe­tisch anspre­chend als auch funk­tio­nal ist. Sie ermög­li­chen eine klare Sicht auf Displays und schüt­zen diese gleich­zei­tig vor Staub und Schmutz. Zudem sind sie leicht zu rei­ni­gen und tra­gen zur Langlebigkeit des Geräts bei.
 
 
Front- oder Dekorfolien
Front- oder Dekorfolien bei HMIs bie­ten eine fle­xi­ble und kos­ten­ef­fi­zi­ente Lösung für die Benutzeroberfläche von Geräten. Sie sind leicht und kön­nen in ver­schie­de­nen Designs und Farben her­ge­stellt wer­den, um die Benutzererfahrung zu ver­bes­sern. Darüber hin­aus sind Folien wider­stands­fä­hig gegen Umwelteinflüsse, was ihre Langlebigkeit und Funktionalität erhöht.
 
LOCA Optical Bonding
LOCA Bonding (Liquid Optically Clear Adhesive) ist eine fort­schritt­li­che Technik, die eine nahezu bla­sen­freie Verbindung zwi­schen Displays und Schutzglas ermög­licht. Durch die Verwendung von flüs­si­gem Kleber wird eine her­vor­ra­gende Lichtübertragung erzielt, was die Bildqualität erheb­lich ver­bes­sert. Diese Methode bie­tet zudem zusätz­li­chen Schutz gegen Stöße und Vibrationen, wodurch die Langlebigkeit der Geräte gestei­gert wird.
 
OCA Bonding
OCA Bonding (Optically Clear Adhesive Bonding) ist eine Technik, die es ermög­licht, Touchsensoren und Glas- oder Folienoberflächen naht­los mit­ein­an­der zu ver­bin­den, wodurch eine opti­male Sichtbarkeit erzielt wird. Diese Methode redu­ziert Blenden und ver­bes­sert die Farbintensität, indem sie den Abstand zwi­schen dem Sensor und der Abdeckung mini­miert. OCA Bonding bie­tet zudem einen effek­ti­ven Schutz vor Stößen und Kratzern, was die Haltbarkeit der Geräte erhöht.
 
Touchsensor
Touchsensoren sind inno­va­tive Eingabegeräte, die eine intui­tive und benut­zer­freund­li­che Interaktion mit digi­ta­len Displays ermög­li­chen. Sie reagie­ren auf Berührungen und Gesten, was die Bedienung von Geräten erheb­lich ver­ein­facht und beschleu­nigt. Mit ver­schie­de­nen Technologien wie kapa­zi­ti­ven und resis­ti­ven Sensoren bie­ten sie viel­sei­tige Anwendungsmöglichkeiten in zahl­rei­chen Branchen.
 
LOCA Optical Bonding
LOCA Bonding (Liquid Optically Clear Adhesive) ist eine fort­schritt­li­che Technik, die eine nahezu bla­sen­freie Verbindung zwi­schen Displays und Schutzglas ermög­licht. Durch die Verwendung von flüs­si­gem Kleber wird eine her­vor­ra­gende Lichtübertragung erzielt, was die Bildqualität erheb­lich ver­bes­sert. Diese Methode bie­tet zudem zusätz­li­chen Schutz gegen Stöße und Vibrationen, wodurch die Langlebigkeit der Geräte gestei­gert wird.
 
Air Gap Bonding
Air Gap Bonding ist eine Bonding-​Technik, die eine luft­dichte Verbindung zwi­schen einem Display und einer Schutzschicht schafft, ohne dass ein opti­sches Klebeband ver­wen­det wird. Diese Methode redu­ziert Reflexionen und ver­bes­sert die Sichtbarkeit, indem sie den Abstand zwi­schen den bei­den Oberflächen mini­miert. Zudem ermög­licht sie eine höhere Flexibilität in der Konstruktion, was zu schlan­ke­ren und leich­te­ren Geräten führt.
 
Display
Displays sind essen­zi­elle Komponenten moder­ner Geräte, die Informationen visu­ell dar­stel­len und eine benut­zer­freund­li­che Interaktion ermög­li­chen. Sie kom­men in einer Vielzahl von Technologien, wie LCD, OLED und LED, zum Einsatz und bie­ten unter­schied­li­che Vorteile in Bezug auf Bildqualität und Energieeffizienz. Darüber hin­aus sind Displays in ver­schie­de­nen Größen und Formaten erhält­lich, um den unter­schied­li­chen Anforderungen von Anwendungen gerecht zu wer­den.
 
Mechanische Tasten
Mechanische Tasten sind bewährte Bedienelemente, die durch ihre tak­tile Rückmeldung eine prä­zise und zuver­läs­sige Nutzererfahrung bie­ten. Sie sind in einer Vielzahl von Anwendungen ver­brei­tet, z.B. in indus­tri­el­len Steuerungen, und über­zeu­gen durch Langlebigkeit und Robustheit. Dank ihrer indi­vi­du­el­len Gestaltungsmöglichkeiten kön­nen mecha­ni­sche Tasten opti­mal an die spe­zi­fi­schen Anforderungen des jewei­li­gen Gerätes ange­passt wer­den.
 
Beleuchtung Logo
Die Beleuchtung von Tasten und Logos ver­bes­sert nicht nur die Sichtbarkeit in dunk­len Umgebungen, son­dern ver­leiht Geräten auch eine anspre­chende Ästhetik. Durch den Einsatz von LED-​Technologie kön­nen Farben und Helligkeit indi­vi­du­ell ange­passt wer­den, um ver­schie­dene Benutzererlebnisse zu schaf­fen. Beleuchtete Tasten und Logos för­dern zudem die Benutzerfreundlichkeit, indem sie die Interaktion intui­ti­ver gestal­ten.
 
Kapazitive Tasten
Kapazitive Tasten nut­zen die Veränderung des elek­tri­schen Feldes, um Berührungen zu erken­nen, was eine reak­ti­ons­schnelle und benut­zer­freund­li­che Interaktion ermög­licht. Sie bie­ten ein moder­nes, ele­gan­tes Design, da sie häu­fig flä­chen­bün­dig und ohne beweg­li­che Teile gestal­tet sind. Diese Technologie ist beson­ders lang­le­big und wider­stands­fä­hig gegen Abnutzung, was die Lebensdauer der Tasten ver­län­gert.
 
Folienbearbeitung
Die Folienbearbeitung bei Folientastaturen umfasst ver­schie­dene Verfahren, um die Funktionalität und Ästhetik der Tastenoberflächen zu opti­mie­ren. Dazu gehö­ren das Schneiden, Bedrucken und Laminieren von Folien, die eine prä­zise Anpassung an die jewei­li­gen Anforderungen ermög­li­chen. Diese Bearbeitungstechniken sor­gen nicht nur für eine ver­bes­serte Haptik, son­dern auch für eine län­gere Lebensdauer und Widerstandsfähigkeit der Tasten.
 
Folientastaturen
Folientastaturen sind eine viel­sei­tige und kos­ten­ef­fi­zi­ente Lösung für die Bedienung von Geräten, die sich durch ihre fla­che Bauweise aus­zeich­nen. Sie bestehen aus fle­xi­blen Folienmaterialien, die sowohl die Tasten als auch die dar­un­ter­lie­gen­den Schaltkreise inte­grie­ren, was die Herstellung ver­ein­facht. Diese Tastaturen bie­ten eine hohe Resistenz gegen Umwelteinflüsse, wie Feuchtigkeit und Staub, und sind daher ideal für ver­schie­dene Anwendungen.
 
Single Board Computer
Single Board Computer sind zen­trale Komponenten in vie­len elek­tro­ni­schen Geräten und die­nen als Plattform für die Verarbeitung und Steuerung von Informationen. Sie inte­grie­ren wich­tige Funktionen wie Prozessoren, Speicher und Schnittstellen, um eine effi­zi­ente Datenverarbeitung zu gewähr­leis­ten. Mit ihrer kom­pak­ten Bauweise sind Rechnerboards ideal für Anwendungen in ver­schie­de­nen Branchen, von der Automatisierungstechnik bis hin zu trag­ba­ren Geräten.
 
Bestückung
Die Bestückung von Leiterplatinen ist ein essen­zi­el­ler Prozess der Elektronikfertigung, bei dem elek­tro­ni­sche Bauteile prä­zise auf einer Leiterplatte (Printed Circuit Board oder PCB) plat­ziert wer­den. Techniken wie die auto­ma­ti­sierte SMD-​Bestückung ermög­li­chen eine schnelle und effi­zi­ente Platzierung, die hohe Genauigkeit und Qualität garan­tiert. Diese Verfahren sind ent­schei­dend für die Funktionalität und Zuverlässigkeit elek­tro­ni­scher Geräte in ver­schie­de­nen Anwendungen.
 
Kabel
Kabel sind unver­zicht­bare Komponenten in der Elektronik, die eine zuver­läs­sige Verbindung zwi­schen ver­schie­de­nen Geräten und Systemen gewähr­leis­ten. Sie sind in ver­schie­de­nen Ausführungen und Materialien erhält­lich, um unter­schied­li­chen Anforderungen hin­sicht­lich Stromstärke, Datenübertragung und Umgebungsbedingungen gerecht zu wer­den. Hochwertige Kabel tra­gen ent­schei­dend zur Signalqualität und zur Langlebigkeit der gesam­ten Installation bei.
 
Gehäuse
Gehäuse sind ent­schei­dende Komponenten in der Elektronik, die nicht nur den Schutz der inne­ren Bauteile vor äuße­ren Einflüssen gewähr­leis­ten, son­dern auch die opti­sche Gestaltung von Geräten beein­flus­sen. Sie sind in ver­schie­de­nen Materialien, wie Metall oder Kunststoff, erhält­lich und kön­nen indi­vi­du­ell gestal­tet wer­den, um den spe­zi­fi­schen Anforderungen eines Produkts gerecht zu wer­den. Zudem tra­gen Gehäuse zur Wärmeableitung und zur elek­tro­ma­gne­ti­schen Abschirmung bei, was die Leistung und Zuverlässigkeit der Geräte erhöht.
 
Trägerplatten
Trägerplatten sind wich­tige Elemente in der Elektronik, die als sta­bile Grundlage für die Montage von Bauteilen und Komponenten die­nen. Sie bie­ten nicht nur struk­tu­relle Unterstützung, son­dern hel­fen auch bei der Wärmeableitung und der elek­tro­ma­gne­ti­schen Abschirmung. Mit ver­schie­de­nen Materialien und Oberflächenbehandlungen kön­nen Trägerplatten an spe­zi­fi­sche Anforderungen und Umgebungen ange­passt wer­den.
 
HMI Komplettlösung

Spaltverguss

Die Fügestellen oder ‑kan­ten zwi­schen zwei Sichtteilen stel­len eine beson­ders anfäl­lige Stelle für das Eindringen von Schmutz, Staub und exter­nen Medien dar. Durch das ober­flä­chen­bün­dige Vergießen die­ser Fügekanten lässt sich der Eintritt von Fremdkörpern und ‑stof­fen effek­tiv ver­mei­den. Dies sorgt nicht nur für eine sau­bere und lang­le­bige Verbindung, son­dern ermög­licht auch die Erreichung einer höhe­ren IP-​Schutzklasse, was die Widerstandsfähigkeit gegen­über Umwelteinflüssen deut­lich erhöht. Erfahren Sie mehr über die Vorteile und Möglichkeiten des Spaltverguss erfahren.

Splitterschutzfolie

Die Splitterschutzfolie bie­tet einen effek­ti­ven Schutz für Glasfrontplatten, indem sie das Zerbrechen des Glases ver­hin­dert und gefähr­li­che Splitter zurück­hält. Diese Folie erhöht nicht nur die Sicherheit, son­dern kann auch die Bruchsicherheit der Glasoberflächen deut­lich ver­bes­sern. Darüber hin­aus trägt sie zur Reduzierung von UV-​Strahlen bei, was das Innere vor Verfärbungen schützt. Weitere Informationen über die Vorteile von Splitterschutzfolie und deren Anwendung.

Glas

Glasfronten bei HMIs bie­ten eine moderne und benut­zer­freund­li­che Oberfläche, die sowohl ästhe­tisch anspre­chend als auch funk­tio­nal ist. Sie ermög­li­chen eine klare Sicht auf Displays und schüt­zen diese gleich­zei­tig vor Staub und Schmutz. Zudem sind sie leicht zu rei­ni­gen und tra­gen zur Langlebigkeit des Geräts bei. Mehr über die Möglichkeiten und Vorteile von Glasfronten bei HMIs.

Front- oder Dekorfolien

Front- oder Dekorfolien bei HMIs bie­ten eine fle­xi­ble und kos­ten­ef­fi­zi­ente Lösung für die Benutzeroberfläche von Geräten. Sie sind leicht und kön­nen in ver­schie­de­nen Designs und Farben her­ge­stellt wer­den, um die Benutzererfahrung zu ver­bes­sern. Darüber hin­aus sind Folien wider­stands­fä­hig gegen Umwelteinflüsse, was ihre Langlebigkeit und Funktionalität erhöht. Weitere Informationen über die Vorteile und Anwendungen von Front- oder Dekorfolien in HMIs.

LOCA Optical Bonding

LOCA Bonding (Liquid Optically Clear Adhesive) ist eine fort­schritt­li­che Technik, die eine nahezu bla­sen­freie Verbindung zwi­schen Displays und Schutzglas ermög­licht. Durch die Verwendung von flüs­si­gem Kleber wird eine her­vor­ra­gende Lichtübertragung erzielt, was die Bildqualität erheb­lich ver­bes­sert. Diese Methode bie­tet zudem zusätz­li­chen Schutz gegen Stöße und Vibrationen, wodurch die Langlebigkeit der Geräte gestei­gert wird. Mehr über die Vorteile und Anwendungen von LOCA-​Bonding erfahren.

OCA Bonding

OCA Bonding (Optically Clear Adhesive Bonding) ist eine Technik, die es ermög­licht, Touchsensoren und Glas- oder Folienoberflächen naht­los mit­ein­an­der zu ver­bin­den, wodurch eine opti­male Sichtbarkeit erzielt wird. Diese Methode redu­ziert Blenden und ver­bes­sert die Farbintensität, indem sie den Abstand zwi­schen dem Sensor und der Abdeckung mini­miert. OCA Bonding bie­tet zudem einen effek­ti­ven Schutz vor Stößen und Kratzern, was die Haltbarkeit der Geräte erhöht. Mehr über die Vorteile und Anwendungen von OCA Bonding erfahren.

Touchsensor

Touchsensoren sind inno­va­tive Eingabegeräte, die eine intui­tive und benut­zer­freund­li­che Interaktion mit digi­ta­len Displays ermög­li­chen. Sie reagie­ren auf Berührungen und Gesten, was die Bedienung von Geräten erheb­lich ver­ein­facht und beschleu­nigt. Mit ver­schie­de­nen Technologien wie kapa­zi­ti­ven und resis­ti­ven Sensoren bie­ten sie viel­sei­tige Anwendungsmöglichkeiten in zahl­rei­chen Branchen. Weitere Informationen über die ver­schie­de­nen Touchlösungen.

LOCA Optical Bonding

LOCA Bonding (Liquid Optically Clear Adhesive) ist eine fort­schritt­li­che Technik, die eine nahezu bla­sen­freie Verbindung zwi­schen Displays und Schutzglas ermög­licht. Durch die Verwendung von flüs­si­gem Kleber wird eine her­vor­ra­gende Lichtübertragung erzielt, was die Bildqualität erheb­lich ver­bes­sert. Diese Methode bie­tet zudem zusätz­li­chen Schutz gegen Stöße und Vibrationen, wodurch die Langlebigkeit der Geräte gestei­gert wird. Mehr über die Vorteile und Anwendungen von LOCA-​Bonding erfahren.

Air Gap Bonding

Air Gap Bonding ist eine Bonding-​Technik, die eine luft­dichte Verbindung zwi­schen einem Display und einer Schutzschicht schafft, ohne dass ein opti­sches Klebeband ver­wen­det wird. Diese Methode redu­ziert Reflexionen und ver­bes­sert die Sichtbarkeit, indem sie den Abstand zwi­schen den bei­den Oberflächen mini­miert. Zudem ermög­licht sie eine höhere Flexibilität in der Konstruktion, was zu schlan­ke­ren und leich­te­ren Geräten führt. Weitere Informationen über Air Gap Bonding und andere Touchlösungen.

Display

Mechanische Tasten

Mechanische Tasten sind bewährte Bedienelemente, die durch ihre tak­tile Rückmeldung eine prä­zise und zuver­läs­sige Nutzererfahrung bie­ten. Sie sind in einer Vielzahl von Anwendungen ver­brei­tet, z.B. in indus­tri­el­len Steuerungen, und über­zeu­gen durch Langlebigkeit und Robustheit. Dank ihrer indi­vi­du­el­len Gestaltungsmöglichkeiten kön­nen mecha­ni­sche Tasten opti­mal an die spe­zi­fi­schen Anforderungen des jewei­li­gen Gerätes ange­passt wer­den. Weitere Informationen über mecha­ni­sche Tasten und deren Anwendungen.

Beleuchtung Logo

Die Beleuchtung von Tasten und Logos ver­bes­sert nicht nur die Sichtbarkeit in dunk­len Umgebungen, son­dern ver­leiht Geräten auch eine anspre­chende Ästhetik. Durch den Einsatz von LED-​Technologie kön­nen Farben und Helligkeit indi­vi­du­ell ange­passt wer­den, um ver­schie­dene Benutzererlebnisse zu schaf­fen. Beleuchtete Tasten und Logos för­dern zudem die Benutzerfreundlichkeit, indem sie die Interaktion intui­ti­ver gestal­ten. Weitere Informationen über die Möglichkeiten der Beleuchtung von Tasten und Logos.

Kapazitive Tasten

Kapazitive Tasten nut­zen die Veränderung des elek­tri­schen Feldes, um Berührungen zu erken­nen, was eine reak­ti­ons­schnelle und benut­zer­freund­li­che Interaktion ermög­licht. Sie bie­ten ein moder­nes, ele­gan­tes Design, da sie häu­fig flä­chen­bün­dig und ohne beweg­li­che Teile gestal­tet sind. Diese Technologie ist beson­ders lang­le­big und wider­stands­fä­hig gegen Abnutzung, was die Lebensdauer der Tasten ver­län­gert. Mehr über kapa­zi­tive Tasten und deren Anwendungen erfahren.

Folienbearbeitung

Die Folienbearbeitung bei Folientastaturen umfasst ver­schie­dene Verfahren, um die Funktionalität und Ästhetik der Tastenoberflächen zu opti­mie­ren. Dazu gehö­ren das Schneiden, Bedrucken und Laminieren von Folien, die eine prä­zise Anpassung an die jewei­li­gen Anforderungen ermög­li­chen. Diese Bearbeitungstechniken sor­gen nicht nur für eine ver­bes­serte Haptik, son­dern auch für eine län­gere Lebensdauer und Widerstandsfähigkeit der Tasten. Weitere Informationen über die Folienbearbeitung und Folientastaturen.

Folientastaturen

Folientastaturen sind eine viel­sei­tige und kos­ten­ef­fi­zi­ente Lösung für die Bedienung von Geräten, die sich durch ihre fla­che Bauweise aus­zeich­nen. Sie bestehen aus fle­xi­blen Folienmaterialien, die sowohl die Tasten als auch die dar­un­ter­lie­gen­den Schaltkreise inte­grie­ren, was die Herstellung ver­ein­facht. Diese Tastaturen bie­ten eine hohe Resistenz gegen Umwelteinflüsse, wie Feuchtigkeit und Staub, und sind daher ideal für ver­schie­dene Anwendungen. Weitere Informationen über Folientastaturen und deren Vorteile.

Single Board Computer

Single Board Computer sind zen­trale Komponenten in vie­len elek­tro­ni­schen Geräten und die­nen als Plattform für die Verarbeitung und Steuerung von Informationen. Sie inte­grie­ren wich­tige Funktionen wie Prozessoren, Speicher und Schnittstellen, um eine effi­zi­ente Datenverarbeitung zu gewähr­leis­ten. Mit ihrer kom­pak­ten Bauweise sind Rechnerboards ideal für Anwendungen in ver­schie­de­nen Branchen, von der Automatisierungstechnik bis hin zu trag­ba­ren Geräten. Mehr über Single Board Computer und deren Anwendungen erfahren.

Bestückung

Die Bestückung von Leiterplatinen ist ein essen­zi­el­ler Prozess der Elektronikfertigung, bei dem elek­tro­ni­sche Bauteile prä­zise auf einer Leiterplatte (Printed Circuit Board oder PCB) plat­ziert wer­den. Techniken wie die auto­ma­ti­sierte SMD-​Bestückung ermög­li­chen eine schnelle und effi­zi­ente Platzierung, die hohe Genauigkeit und Qualität garan­tiert. Diese Verfahren sind ent­schei­dend für die Funktionalität und Zuverlässigkeit elek­tro­ni­scher Geräte in ver­schie­de­nen Anwendungen. Mehr über die Bestückung von Leiterplatinen erfahren.

Kabel

Kabel sind unver­zicht­bare Komponenten in der Elektronik, die eine zuver­läs­sige Verbindung zwi­schen ver­schie­de­nen Geräten und Systemen gewähr­leis­ten. Sie sind in ver­schie­de­nen Ausführungen und Materialien erhält­lich, um unter­schied­li­chen Anforderungen hin­sicht­lich Stromstärke, Datenübertragung und Umgebungsbedingungen gerecht zu wer­den. Hochwertige Kabel tra­gen ent­schei­dend zur Signalqualität und zur Langlebigkeit der gesam­ten Installation bei. Weitere Informationen über Kabel und unsere umfas­sen­den Lösungen.

Gehäuse

Gehäuse sind ent­schei­dende Komponenten in der Elektronik, die nicht nur den Schutz der inne­ren Bauteile vor äuße­ren Einflüssen gewähr­leis­ten, son­dern auch die opti­sche Gestaltung von Geräten beein­flus­sen. Sie sind in ver­schie­de­nen Materialien, wie Metall oder Kunststoff, erhält­lich und kön­nen indi­vi­du­ell gestal­tet wer­den, um den spe­zi­fi­schen Anforderungen eines Produkts gerecht zu wer­den. Zudem tra­gen Gehäuse zur Wärmeableitung und zur elek­tro­ma­gne­ti­schen Abschirmung bei, was die Leistung und Zuverlässigkeit der Geräte erhöht. Mehr über Gehäuse und unsere umfas­sen­den Lösungen erfahren.

Trägerplatten

Trägerplatten sind wich­tige Elemente in der Elektronik, die als sta­bile Grundlage für die Montage von Bauteilen und Komponenten die­nen. Sie bie­ten nicht nur struk­tu­relle Unterstützung, son­dern hel­fen auch bei der Wärmeableitung und der elek­tro­ma­gne­ti­schen Abschirmung. Mit ver­schie­de­nen Materialien und Oberflächenbehandlungen kön­nen Trägerplatten an spe­zi­fi­sche Anforderungen und Umgebungen ange­passt wer­den. Mehr über Trägerplatten und deren Anwendungen erfahren.

TFT-​LCD: Vorteile und Technologie

TFT (Thin-​Film Transistor) und LCD (Liquid Crystal Display) sind eng mit­ein­an­der ver­bun­dene Technologien, da TFT eine spe­zi­elle Art von LCD dar­stellt. Ein LCD-​Display nutzt Flüssigkristalle, um Licht zu modu­lie­ren und Bilder dar­zu­stel­len. Diese Displays benö­ti­gen eine Hintergrundbeleuchtung, da die Flüssigkristalle selbst kein eige­nes Licht erzeu­gen. TFT ist eine Art von „akti­ven Matrix“-LCD, bei dem jeder Pixel durch einen eige­nen Transistor gesteu­ert wird. Dies ermög­licht eine prä­zi­sere Steuerung und schnel­lere Reaktionszeiten im Vergleich zu tra­di­tio­nel­len „pas­si­ven Matrix“-LCDs.
Der Hauptvorteil von TFT-​LCD-​Displays ist ihre Fähigkeit, eine hohe Bildqualität mit schnel­ler Reaktionszeit und hoher Auflösung zu lie­fern. Sie bie­ten eine bes­sere Farbwiedergabe, höhere Kontraste und eine brei­tere Blickwinkelstabilität als andere LCD-​Technologien wie TN (Twisted Nematic). TFT-​Displays sind auch effi­zi­en­ter, da sie es ermög­li­chen, mehr Informationen auf klei­ne­rer Fläche anzu­zei­gen, was sie ideal für Smartphones, Tablets und andere trag­bare Geräte macht.
Darüber hin­aus sind TFT-​LCDs kos­ten­güns­tig in der Herstellung und bie­ten eine gute Leistung bei rela­tiv gerin­gem Stromverbrauch. Die schnelle Ansteuerung der ein­zel­nen Pixel macht sie auch für dyna­mi­sche Inhalte und Videodarstellungen geeig­net. In moder­nen Anwendungen, wie in Computermonitoren, Fernsehern und Handheld-​Geräten, bie­ten TFT-​LCDs eine aus­ge­zeich­nete Balance zwi­schen Bildqualität und Energieeffizienz, wodurch sie eine der bevor­zug­ten Displaytechnologien auf dem Markt sind.

Multitouch Display

Vorteile von TFT-​LCD Displays

Hohe Bildqualität: TFT-​LCDs bie­ten leben­dige Farben und scharfe Details durch prä­zise Pixelsteuerung.
Schnelle Reaktionszeiten: Sie ermög­li­chen flüs­sige Video- und Animationen ohne Ghosting oder Verzögerung.
Energieeffizient: Der geringe Stromverbrauch macht sie ideal für mobile Geräte und bat­te­rie­be­trie­bene Anwendungen.
Breite Blickwinkelstabilität: Farben und Kontraste blei­ben auch bei seit­li­cher Betrachtung nahezu unverändert.

Einsatzbereiche der TFT-​LCD Displays

Automatisierungstechnik

TFT-​LCD-​Displays fin­den in einer Vielzahl von Bereichen Anwendung. Sie wer­den in Smartphones und Tablets ver­wen­det, um klare und hoch­auf­lö­sende Bilder und Videos dar­zu­stel­len. In Laptops und Computermonitoren sor­gen sie für eine hohe Bildqualität und schnelle Reaktionszeiten. Fernseher set­zen auf TFT-​LCD-​Technologie für gesto­chen scharfe Darstellungen bei unter­schied­lichs­ten Lichtverhältnissen. In Fahrzeugen sind sie als Armaturenbrettanzeigen oder Navigationssysteme inte­griert. Digitale Signage nutzt TFT-​LCDs für Werbetafeln und Informationsanzeigen in öffent­li­chen Bereichen. Kameras und Fotografie-​Equipment set­zen auf diese Displays, um eine prä­zise Bildvorschau zu bie­ten. In Medizinischen Geräten wie Monitoren und Ultraschallgeräten wird die hohe Auflösung für genaue Diagnosen benö­tigt. Smartwatches und Wearables nut­zen TFT-​LCDs für kom­pakte und ener­gie­ef­fi­zi­ente Bilddarstellung. In Industrieanwendungen steu­ern TFT-​LCDs Maschinen und Prozesse durch Benutzeroberflächen. Schließlich sind sie auch in Haushaltsgeräten wie Mikrowellen und Kühlschränken für Anzeigezwecke zu finden.

Display-​LCD-​Technologien

Displaytechnologien

Display-​Controller und Display-Controllerboards

Displaycontroller sind eine Schlüsselkomponente in der moder­nen Displaytechnologie, da sie die Verbindung zwi­schen dem Display und dem rest­li­chen System her­stel­len und somit für die rei­bungs­lose Darstellung von Bildinformationen ver­ant­wort­lich sind. Diese Controller ermög­li­chen es, die Signale, die vom Hauptprozessor oder Grafikprozessor (GPU) kom­men, in eine Form zu über­set­zen, die das Display ver­ste­hen und anzei­gen kann.

Wichtige Aufgaben von Displaycontrollern

Signalverarbeitung: Displaycontroller neh­men die Bilddaten vom Prozessor oder von der GPU ent­ge­gen und ver­ar­bei­ten sie, bevor sie an das Display wei­ter­ge­ge­ben wer­den. Dabei kann es sich um Skalierung, Farbanpassung oder die Umwandlung von Formaten han­deln (z. B. von RGB zu YCbCr).
Steuerung der Ansteuerungseinheit: Der Controller steu­ert, wie die ein­zel­nen Pixel auf dem Display ange­steu­ert wer­den. Bei TFT-​Displays ermög­licht der Controller bei­spiels­weise die prä­zise Steuerung der Transistoren, die die Flüssigkristalle steu­ern.
Timing und Synchronisation: Ein Displaycontroller sorgt dafür, dass die Bilddaten zur rich­ti­gen Zeit an das Display gesen­det wer­den, um ein flüs­si­ges und ruck­el­freies Bild zu erzeu­gen. Dies umfasst die Steuerung der Bildwiederholfrequenz (Refresh Rate) und der Horizontal- und Vertikalsynchronisation.
Anpassung an Displaytypen: Unterschiedliche Displaytechnologien, wie z.B. TFT-​LCD, erfor­dern unter­schied­li­che Steuerungsprotokolle und Anpassungen. Displaycontroller müs­sen daher in der Lage sein, diese Anforderungen zu berück­sich­ti­gen und die Performance des jewei­li­gen Displays zu optimieren.

Display-Controller

Vorteile unserer Displaycontroller

Optimale Integration für maxi­male Leistung
Platzsparende und robuste Designs
Hohe Kompatibilität mit unse­ren TFT-LCD-Displays
Zuverlässige und lang­le­bige Steuerungslösungen für anspruchs­volle Anwendungen
Alles aus einer Hand

Warum EP Electronic Print?

Bei EP Electronic Print set­zen wir auf modernste Komponenten und Technologien, um inno­va­tive und maß­ge­schnei­derte HMI-​Lösungen zu ent­wi­ckeln.

Haben Sie Fragen oder möch­ten Sie mehr über unsere HMI-​Lösungen erfah­ren?

Unser Team steht Ihnen gerne zur Verfügung, um Sie zu bera­ten und gemein­sam die beste Lösung auch für Ihr Projekt zu fin­den. Nutzen Sie unser Kontaktformular oder rufen Sie uns direkt an – wir freuen uns auf Ihre Anfrage!

Unverbindliche Kontakt-​Anfrage


    EP Electronic Print GmbH
    Am Weidegrund 8 & 10
    82194 Gröbenzell
    Technische Anfragen:
    Telefon: +49 (0)8142 /420896–20
    E‑Mail: projekte@ep-electronicprint.de
    Allgemeine Anfragen:
    Telefon: +49 (0)8142 /420896–0
    E‑Mail: info@ep-electronicprint.de